

Food and Agri Economics Review (FAER)

DOI: http://doi.org/10.26480/faer.02.2024.88.91

ISSN: 2785-9002 (Online) CODEN: FAERCS

RESEARCH ARTICLE

ASSESSMENT OF ANTI-NUTRIENT AND TOXIC SUBSTANCES LEVEL IN SELECTED ROOT CROPS OF DOKO, NIGER STATE, NIGERIA

Aminu Muhammad a*, Ibrahim Mohammed Ibrahimb, and Salisu Abubakarb

- ^aDepartment of Biochemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria.
- bSheda Science and Technology Complex (SHESTCO), Abuja
- *Corresponding Author Email: ibrahimyamagi@gmail.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:

Received 01 June 2024 Revised 04 July 2024 Accepted 06 August 2024 Available online 10 August 2024

ABSTRACT

Evaluation of anti-nutrient and toxic substances in tuber crops is crucial for nutritional studies, establishing baseline concentrations of cyanide, nitrate, phytate, and oxalate in human foods. Quantitative analysis was conducted on selected tuber crops namely *Dioscorea alata* (Cassava), *Manihot esculenta* (Yam), *Xanthosoma sagittifolium* (coco yam), *Solanum tuberosum* (Irish potato), and *Ipomoea batatas* (Sweet potato), commonly consumed in Doko, Niger State, Nigeria. Cyanide and nitrate concentrations were determined using colorimetric methods, while phytate and oxalate were measured using titrimetric methods. Results indicate that cyanide levels in most tuber crops were within the permissible limit of 200 mg/kg fresh weight, except for *Manihot esculenta* and *Ipomoea batatas*, which exceeded this limit. Nitrate concentrations across all samples were within tolerable levels. Phytate content ranged from 1.27±0.02 to 2.17±0.13 mg/100g, with yam and cocoyam showing the lowest and highest concentrations, respectively. Oxalate mean values varied among *Dioscorea alata*, *Manihot esculenta*, *Xanthosoma sagittifolium*, *Solanum tuberosum*, and *Ipomoea batatas*. The study underscores the nutritional benefits of tuber crops while highlighting the presence of inherent antinutrients and toxic substances. Proper processing methods are essential to mitigate potential health risks associated with their consumption.

KEYWORDS

Tuber crops, Toxic substances, Cyanide, Nitrate, Phytate, Oxalates.

1. Introduction

Root crops like yam (*Dioscorea alata*), cassava (*Manihot esculenta*), cocoyam (*Xanthosoma sagitifolium*), Irish potato (*Solanum tuberosum*), and sweet potato (*Ipomoea batatas*) are essential sources of carbohydrates, energy, and phytonutrients vital for metabolic activities (Anita and Shweta, 2022; Marolt, and Kolar, 2021; Kumar, and Sharma, 2017). However, they also contain natural anti-nutrients that diminish nutritional value by hindering mineral bioavailability and nutrient digestibility (Okaka, 2011; Ames et al., 1990). These antinutrients, including oxalates which can cause urinary tract stone formation and cyanogenic glycosides found in cassava

that produce hydrogen cyanide, pose health risks such as respiratory poisoning and metabolic disruptions (Nweke, 2011; Ellenborn and Barcelonx, 1988; Musa et al., 2011). Phytates, while considered antinutrients, may offer health benefits like reducing the risk of heart disease and diabetes (Holloway and Bradbury, 1999). Conversely, nitrates in root crops are linked to health issues such as cancer and methemoglobinemia, affecting nutrient absorption and overall nutritional quality (Macrae et al., 1997; Anjana et al., 2007). Given these concerns, evaluating cyanide, nitrate, phytate, and oxalate levels in commonly consumed root crops in Doko, is crucial to establish safety standards for human consumption (Musa, 2012).

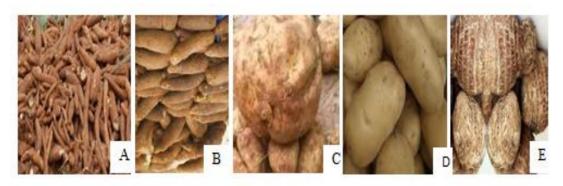


Figure 1: Tubers of [A] Manihot esculenta; [B] Dioscorea alata; [C] Ipomoea Batatas; [D] Solanum tuberosum; [E] Xanthosoma sagittifolium.

Quick Response Code	Access this article online			
回点集日 第4条 5分 回名字形	Website: www.faer.com.my	DOI: 10.26480/faer.02.2024.88.91		

The aim of the study is to evaluate the level of some anti-nutrient and toxic substances in some commonly consumed root crops in Doko, for the establishment of baseline concentration index.

2. MATERIALS AND METHODS

Fresh samples of *Manihot esculenta* (cassava), *Dioscorea alata* (yam), *Solanum tuberosum*. (Irish potato), *Ipomoea Batatas*. (Sweet potato), and *Xanthosoma sagittifolium*. (cocoyam) was purchased in three different market namely; Doko market, Gaba market and Danchitagi market in Lavun Local government area, Niger State, Nigeria.

2.1 Determination of Phytic Acid

This was determined according to (Marolt and Kolar, 2021).2g of sample each was weighed into a 250ml conical flask Follow by adding 100ml of 2% HCl and allowed to stay for 3 hours. The solution was then filtered through double layer Whitman No.1filter paper. The filtrate was then transfer into 250ml conical flask and 107ml distilled water was added in each case to give acidity follow by adding 10ml of 0.3% ammonium thiocyanate (NH4SCN) solution into each of the solution to serve as indicator. The solutions were then titrated against standard iron (III) chloride (Fecl $_3$) solution containing 0.00195g/ml (1.95g/l). The end-point was slightly brownish-yellow which persisted for about 5mins. The percentage phytic acid or phytic acid g/100g sample was calculated using the formula:

%Phytic acid = <u>Titre value X 0.00195 X 1.19 X 100 X 3.55</u>

Weight of sample

2.2 Determination of Oxalate

Oxalate was determined through the colorimetric method (AOAC. 2009). 1g of grounded samples were weighed into a crucible dish and 10ml of distilled water was added, followed by addition of 1ml concentrated $\rm H_2SO_4$. This was allowed to stand for an hour and made up to 50ml with distilled water. 25ml of the solutions was pipette into a conical flask and warmed at 90°c, and titrated against 0.1M potassium permanganate in a burette immediately. A change of colour indicates the end point and the reading of the burette is taken after the red colour become steady for some seconds. The concentration of oxalate (mg g¹) in each of the sample was calculated by multiplying the burette reading by 11.5.

2.3 Estimation of Nitrate

2.3.1 Preparation of The Samples

The nitrate content in the tubers samples were determined by the method of Sjoberg and Alanka (1994). 2g of each of the tubers were weighed, ground and transferred into 100cm³ volumetric flask. The 75cm³ of hot distilled water and 5cm³ of saturated borax solution were added to precipitate the protein. The volumetric flask was warmed in boiling water bath for 15 minutes and 2cm³ of ZnSO⁴ solution was added slowly while shaking. The solution obtained was cooled to the room temperature in a cool water bath. The resulting solution was diluted to mark with distilled water, mixed and filtered. Blank sample material was treated the same way.

2.3.2 Reduction of Nitrate to Nitrite

0.6g of zinc powder was weighed into a $50cm^3$ volumetric flask and spread over the bottom of the flask. Then $4cm^3$ of cadmium sulphate (CdSO₄) solution was added to the zinc powder in flask to obtain homogenous mixture. The spongy metallic cadmium formed was allowed to stand for 10 minutes. $2cm^3$ of 25% NH₄OH and $10cm^3$ of each prepared samples solution above were added to the flask. The flask was shaken for one minutes and then diluted to volume with distilled water and filtered. The

standard nitrate concentrations (containing 0, 50, 100, 150 and 200mg N_aNO_3) were prepared by reading 10cm^3 of each standard solution to a separate volumetric flask prepared with spongy cadmium and treated the same way as sample solution.

2.4 Nitrite Determination

10cm³ of filtrate samples, blank and standard solutions (equivalent to 0, 10, 20, 30 and 40mg of sodium nitrate) were pipette into boiling test tubes. 10cm³ of colour reagent consisting of equal mixture of N-(I-naphthyl) ethylendiammonium chloride reagent and Sulphanilic acid solution was then added. The resulting solution was mixed for one minute and absorbance taken at 530nm. The concentrations of nitrite in the samples were determined by comparing the absorbance of the samples with that of the standards concentration of nitrite in the samples in mg extrapolated from standard curve.

Calculations:-

 $Mg NaNO_3/Kg sample = (b x 100/M)$

Where: b = NaNO3 from standard curve (μg) and M = weight of sample homogenate.

2.5 Estimation of Cyanide

Alkaline picrate method of was used to determine the cyanide content in the test samples (Ikedobi et al., 1980).

2.5.1 Preparation of Standard Curve for Cyanide Estimation

A stock solution potassium cyanide (KCN) was prepared by dissolving 4mg of dried KCN in $100 \rm cm^3$ volumetric flasks containing some quantity of distilled water and was made to mark with distilled water after dissolution. From this stock solution, a series dilution containing 0 – 2mg of KCN concentration were made in ten $15 \rm cm^3$ tightly stopper test tubes. Each tube was made up to $2 \rm cm^3$ with distilled water. To each of the test tubes, $4 \rm cm^3$ of alkaline picrate was added and the solutions obtained were incubated for 5 minutes in water bath at 95°C . After cooling to room temperature, the absorbance was read at $490 \rm nm$ using spectrophotometer. The values were used to plot the standard curve.

2.5.2 Determination of Cyanide

Extraction:1g of each samples of fresh, and processed (5 and 10 minutes boiling and sun drying) root tubers were weighed separately, ground and extracted thrice with 5cm³ of aliquots of 0.1M sodium phosphate buffer, pH 6.8. The extracts obtained were used to determined cyanide concentration.

2.5.3 Test for Cyanide

 $1 cm^3$ of the tubers extract was pippeted into $15 cm^3$ stopper test tubes. This was followed by the addition of $1 cm^3$ of 0.1 M NaOH solution and incubated at room temperature for 30 minutes for total hydrolysis of the extracted Cyanogenic glycoside (dhurrin, prunasin and amygdalin). The HCN liberated (as CN) after this hydrolysis, was determined by addition of alkaline picrate and the solution incubated for another 5 minutes in water bath at 95° C. The absorbance was read after cooling to room temperature by using spectrophotometer (Spectronic 20D' Milton Roy) at wave length of 490 nm.

3. RESULTS AND DISCUSSIONS

Table 1: Showed the Concentrations of anti-nutrient and toxic substance in selected root crops of *D. alata, M. esculenta, X. sagitiffolium, S. tuberosum and I. Batatas.*

Table 1: Concentration of antinutrient and toxic substances in selected root crops					
Samples	Cyanide (mg/kg)	Nitrate (mg/kg)	Phytate (g/100g)	Oxalate (mg/g)	
D. alata	151.70 ± 8.25 ^b	166.67 ± 30.05 ^b	1.27 ± 0.02 ^b	29.13 ± 3.56 ^a	
M. esculenta	648.69 ± 65.55 ^a	225.00 ± 104.08 ^b	0.87 ± 0.11°	23.77 ± 0.58 ^a	
X. sagitiffolium	112.52 ± 33.06 ^b	350.00 ± 175.59b	2.17 ± 0.13 ^a	25.30 ± 2.55a	
S. tuberosum	66.20 ± 25.29 ^b	1725.00 ± 76.38 ^a	1.28 ± 0.05 ^b	24.92 ± 1.89a	
I. batatas	371.39 ± 128.72 ^a	275.00 ± 14.43 ^b	1.17 ± 0.08 ^b	30.15 ± 1.22 ^a	

Means value on the same column with different superscript shows significantly different (p \leq 0.05)

The concentration of the cyanide in Dioscorea *alatas, Xanthosoma sagitiffolium* and *Solanum tuberosum* were within the acceptable level of 200mg/kg fresh weight of tuber crops with exception of *Manihot esculenta* and *Ipomoea batatas* tuber crops that were higher than the permissible level (Everist, 1981; Richard, 1991). Cyanide concentrations above the

permissible level of 200 mg/kg are classified as hazardous or toxic (Ogbadoyi et al., 2006; Musa and Ogbadoyi 2012 b, c). The results thus suggest that the tuber of any of these crops, i.e. *Solanum tuberosum*, *Dioscorea alata, Xanthosoma sagitiffolium* are safe for consumption with respect to cyanide content and regular consumption of raw tuber of

Manihot esculenta and Ipomoea batatas without proper processing may possibly overlord the body with cyanide with attendant health problems of dysfunction of the central nervous system, respiratory failure and cardiac arrest (D'mello, 1989).

The tuber crops with nitrate concentration in the range of 1000-2000mg/kg are classified as high nitrate content in tuber crops (JECFA, 2003; Anjana et al., 2007). Therefore, the results of tuber crop with nitrate concentration of 1725mg/kg are classified as high nitrate content tubers (Ogbadoyi et al., 2011; Musa and Ogbadoyi, 2012b, c). The nitrate concentration in the entire samples of tuber crops are within the acceptable daily intake of 3.65mg/kg for 60kg body weight (219.00mg/day) if 100g of sample are consumed per day (Anjana et al., 2007). Therefore, regular consumption of raw tubers without proper processing may possibly overload the body with nitrates, leading to serious health problems such as cancers and methemoglobinemia (Teigiserova et al., 2019; Anjana et al., 2007; Ogbadoyi et al., 2011; Musa and Ogbadoyi, 2013).

The concentrations of phytate in all the analyzed samples are within the tolerable level and can therefore be considered safe for consumption. The samples mentioned, including *Ipomoea batatas, Dioscorea alatas, Xanthosoma sagittifolium, Solanum tuberosum,* and *Manihot esculenta,* are within the permissible level of 600-800 mg/day if 100g are consumed (Oguchi et al., 1996).

While regular consumption of tuber crops with respect to phytate content without proper processing could deliver toxic levels of these antinutrients into the body with attendant health problem of diabetes mellitus, cancer kidney stone formation, atherosclerosis, and coronary heart diseases (Grases et al., 2000; Thompson 1993; Kaufman et al., 1971).

The concentrations of the oxalate in all the selected tuber crops are within the permissible level of 250mg/100g fresh sample (Oguchi et al., 1996). The analyzed tuber crops are Ipomoea batatas, Dioscorea alatas, Xanthosoma sagitiffolium, Solanum tuberosum, Manihot esculenta. The research findings show the tubers of these plants are safe for consumption concerning their oxalate content. However, regularly consuming raw tubers without proper processing could lead to toxic levels of this antinutrient in the body, potentially causing health issues related to oxalate toxicities (Musa and Ogbadoyi, 2013). This particularly can result in hypocalcaemia, kidney rock, electrolytes discrepancy and decrease associated with bioavailability associated with mineral deposits in your body (Okon and Akpanyung, 2005; Antia et at, 2006; Musa et al., 2011). The consistency in oxalate levels among different tuber plants aligns with earlier research, which also indicate that the type of plant significantly affects the bioaccumulation of chemical compounds by (Aliyu and Morufu, 2006; Adeboye and Babajide, 2007).

4. Conclusions

The cyanide levels in the studied tuber crops, including *Dioscorea alata, Xanthosoma sagittifolium, and Solanum tuberosum,* as well as the nitrate levels in all analyzed samples, are within safety limits for consumption. Additionally, the concentrations of oxalate and phytate in these tuber crops are also deemed safe. This study concludes that while tuber crops are widely consumed for their nutritional benefits, it is essential to be aware of the presence of inherent antinutrients and toxic substances, which can pose health risks if not properly managed. Therefore, appropriate processing methods should be employed to mitigate these risks and ensure safe consumption.

REFERENCE

- Adeboye, A.S. and Babajide, J.M. 2007. Effect of processing methods on antinutrients in selected leafy vegetables. Nigerian Food Journal, 25 (2): Pp. 77 87.
- Aliyu, H.M. and Morufu, A.I. 2006. Proximate analysis of some leafy vegetables, Roselle, jute and bitter leaf. International Journal of Foods and Agricultural Research, 3 (1): Pp. 194-198.
- Amanabo Musa and Emmanuel O. Ogbadoyi, 2014. Determination of Antinutrients and Toxic Substances of Selected Fresh Leafy Vegetables Obtained from Minna Town, Nigeria.
- American Oil Chemists' Society AOCS. 2009. Official methods and recommended practices of the AOCS (6th ed.). Champaign: AOCS Press.
- Ames, B. N., Profet, M., and Gold, L. S., 1990. Nature chemical and synthetic chemical. Proceedings of the National Academy of Sciences, 87(19),

- Pp. 7777-7781. doi:10.1073/pnas.87.19.7777
- Ando, T., 1996. Varietal differences of quality-related compounds in leaves and petioles of spinach grown at two locations. Bulletin of the Horishima Prefectural Agriculture Research Center. 64: Pp. 1 9.
- Anita, S., and Shweta, S., 2022. Advances in the Detection of Anti-Nutritional Factors in Foods: Implications for Food Safety and Human Health. *Journal of Food Science and Technology*, 59(8), Pp. 3125-3136. https://doi.org/10.1007/s13197-022-05511-4
- Anjana, S.U., Muhammed, I., and Abrol, Y.P., 2007.Are nitrate concentrations in leafy vegetables within safe limits? Current Science, 92(3): Pp. 355-360.
- Antia, B.S., Akpan, E.J., Okon, P.A., and Umoren, I.U., 2006. Nutritive and antinutritive evaluation of sweet potatoes, Ipomoea batatas, leaves. Pakistan Journal of Nutrition, 5(2): Pp. 166N.
- Dmello, J.P., Duffus, C.M., and Duffus, J.H., 1991. Toxic substance in crop plants. Cambridge: Royal Society of Chemistry 168, Pp.339.
- Elllenhorn, M.J., and Barcelonx, D.G., 1988. Dical toxicology; Diagnosis and enzymatic assay for total cyanide in cassava, Manihot esculenta crantz and Everist, S.L. 1981. Poisonous plants of Australia. Revised edition. Angus and Robertson, Sydney, Pp 5 –11.
- Everist, S.L., 1981. Poisonous plants of Australia. Revised edition. Angus and Robertson, Sydney, Pp 5 11.
- Grases, F., García-Rivera, I., Prieto, R. M., and March, J. G., 2000. Phytate prevents tissue calcifications in female rats. Biofactors, 11(3), Pp. 171-177. https://doi.org/10.1002/biof.552 0110303
- Haug, W., and Lantzsch, H. J., 1983. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12), Pp. 1423-1426.
- Holloway, W., and Bradbury, J.H., 1999. Anti-nutritional factors in root crops, Chemistry of Tropic Root Crops, 201: Pp. 11-15.
- Ikediobi, C.O., Onyia, G.O.C., and Eluwah, C.E., 1980. A rapid and inexpensive Internet.www.inchem.org/pages/jecfa.html.
- JECFA, Joint FAO/WHO Expert Committee on Food Additives, 2003. Journal of Crop Science. 4(3): Pp. 103-112.
- Kaufman, M. A., Malinovsky, E. S., and Obukhova, M. F., 1971. Phytates and their impact on calcium metabolism. Journal of Nutritional Biochemistry, 2(4), Pp. 248-254. https://doi.org/10.1016/0955-2863(91)90002-F
- Kumar, P., and Sharma, B. D., 2017. Evaluation of the Phytochemical Content and Antinutritional Factors in Yam (Dioscorea spp.). *International Journal of Food Properties*, 20(3), Pp. 678-687. https://doi.org/10.1080/10942912.2016.1178320
- Macrae, R., Robinson, R. K., and Sadler, M. J., 1997. Encyclopaedia of Food Science, Food Technology, and Nutrition. Academic Press.
- Marolt, G., and Kolar, M., 2021. Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review. *Molecules*, 26(1), 174. https://doi.org/10.3390/molecules26010174
- Musa A. and Ogbadoyi E.O., 2012b. Effect of processing methods on some micronutrients, anti- nutrients and toxic substances in Hibiscus sabdariffa. Asian Journal of Biochemistry. 7(2): Pp. 63-79.
- Musa A. and Ogbadoyi E.O., 2012c. Effect of cooking and sun drying on micronutrients, antinutrients and toxic substances in Corchorus olitorius, jute mallow. Journal Nutrition and Food Sciences. 2: 14.
- Musa, A. A., and Ogbadoyi, E. O., 2013. The effect of processing on the antinutritional properties of tubers found in Niger State, Nigeria. *Journal* of Food Research, 2(2), Pp. 135-140. https://doi.org/10.5539/jfr.v2n2p135
- Musa, A., 2012. Influence of plant leaf locations on the bioaccumulations of phytotoxins and nutrients in Corchorus olitorius at market maturity. International Journal of Biology. 4(3): Pp. 130-139.
- Musa, A., and Ogbadoyi, E.O., 2012a. Effect of Nitrogen fertilizer on the levels of some nutrients, anti-nutrients and toxic substances in

- Hibiscus sabdariffa. Asian Journal of Crop Science. 4(3):Pp. 103-112.
- Musa, A., Oladiran, J.A., Ezenwa, M.I.S., Akanya, H.O., and Ogbadoyi, E.O., 2011. Nutrients, anti-nutrients and toxic substances in Hibiscus sabdariffa. Asian Cnidoscolus acontifolus leaf. Pakistan Journal of Nutrition. 4 (4): Pp. 226 230.
- Nweke, F. N., 2011. Food science and technology continental journal Biological and Pharmaceutical Bulletin, vol. 23, no. 1, Pp. 23–26.
- Ogbadoyi E.O., Musa, A., Oladiran J.A., Ezenwa, M.I.S. and Akanya, H.O., 2011. Effect of processing methods on some nutrients and toxic substances in Amaranthus cruentus. International Journal of Applied Biology and Pharmaceutical Technology.2 (2): Pp. 487-502.
- Ogbadoyi, E.O., Makun, A.H., Bamigbade, O.R., Oyewale, O.A. and Oladiran, J.A., 2006. The effect of processing and preservation methods on the oxalate levels of some Nigeria leafy vegetables. Biochemistry. 18 (2): Pp. 121 125.
- Oguchi, Y., Weerakkody, W.A.P., Tanaka, A., Nakazawa, S., and Okafor, A. F., and Nwogbo, 2005. Investigation of the bioavailability of zinc and calcium from some tropical tubers. Nahrung, 44, Pp. 136–137 (Nr2, S).
- Okaka, A. N. C., and Igwenyi, I. O., 2011. Food and Technology. *Continental Journal of Food Science and Technology*, 5(2), Pp. 30-35.
- Oke O.L., 1994. Eliminating cyanogens from cassava through processing: technology and tradition. Acta Hortic 375: Pp. 163–74.
- Okon, E. E., and Akpanyung, E. O., 2005. Nutrient and antinutrient changes

- in traditional African soups prepared from some lesser-known green leafy vegetables. *African Journal of Food Agriculture Nutrition and Development*, 5(1), Pp. 1-15
- Okon, E.U., and Akpanyung, E.O., 2005. Nutrients and antinutrients in selected brands of malts drink products in Nigeria. Pakistan Journal of Nutrition.4 (5): Pp. 352 355.
- Prohp, T.P., Ihimire, I.G., Madusha, A.O., Okpala, H.O., Erebor, J.O., and Oyinbo. C.A., 2006. Some antinutritional and mineral contents of Extra cotyledonous deposit of pride of Barbados, Caesalpina pulcherrima. Pakistan Journal of Nutrition. 5(2): Pp. 114 116.
- Richard, D.W., 1991. Cooperative Extension Service: Cooperative Extension work acts may 8 and June 30, 1914, as amended, Kansas State University, County Extension Councils. Extension Districts and U.S. Department of Agriculture Cooperating.
- Sjoberg, A.M.K., and Alanka, T.A., 1994. Spectrophotometric determination of nitrate in baby food: Collaborative study. Journal of AOAC International. 77 (2): Pp. 425 430.
- Teigiserova, D. A., Hamelin, L., and Thomsen, M., 2019. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. *Resources, Conservation and Recycling*, 149, Pp. 413-426. https://doi.org/10.1016/j.resconrec.2019.05.003
- Thompson, L. U., 1993. Potential health benefits and problems associated with antinutrients in foods. Food Research International, 26(2), Pp. 131-149. https://doi.org/10.1016/0963-9969 (93)90070-9

